Files

187 lines
6.7 KiB
Python
Raw Permalink Normal View History

2025-09-10 13:32:56 +00:00
from pybricks.hubs import PrimeHub
from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Stop
from pybricks.tools import wait, StopWatch, multitask
from umath import pi
class Attachment:
def __init__(self, port, start_angle=0):
self.motor = Motor(port)
self.start_angle = start_angle
def move_attachment(self, degrees, speed):
self.motor.reset_angle(0)
target_angle = degrees
tolerance = 2
movement_timer = StopWatch()
movement_timeout = 3000 # 3 seconds timeout
stuck_threshold = 50 # ms without significant movement
last_angle = 0
stuck_timer = StopWatch()
while movement_timer.time() < movement_timeout:
current_angle = self.motor.angle()
error = target_angle - current_angle
if abs(error) <= tolerance:
self.motor.stop()
# Check if motor is stuck
if abs(current_angle - last_angle) < 1: # Less than 1 degree movement
if stuck_timer.time() > stuck_threshold:
print("Motor appears stuck")
self.motor.stop()
else:
stuck_timer.reset()
last_angle = current_angle
if error > 0:
self.motor.run(speed)
else:
self.motor.run(-speed)
wait(10) # Consistent timing
self.motor.stop()
print("Movement timeout reached")
def reset_attachment(self):
self.motor.reset_angle(0)
return self.move_attachment(self.start_angle, 100)
class Robot:
def __init__(self, left_port, right_port, wheel_diameter):
# Initialize hub and motors
self.hub = PrimeHub()
try:
self.left_motor = Motor(left_port)
self.right_motor = Motor(right_port)
except Exception as e:
print(f"Failed to initialize motors: {e}")
# Reset and calibrate IMU
try:
self.hub.imu.reset_heading(0)
wait(1000) # Give IMU time to calibrate
except Exception as e:
print(f"Failed to initialize IMU: {e}")
# Robot specs
self.wheel_diameter = wheel_diameter
self.wheel_circumference = pi * self.wheel_diameter
# Attachments list
self.attachments = {}
def add_attachment(self, name, port, start_angle=0):
try:
self.attachments[name] = Attachment(port, start_angle)
except Exception as e:
print(f"Failed to add attachment '{name}': {e}")
def move_attachment(self, attachment_name, degrees, speed):
if attachment_name in self.attachments:
return self.attachments[attachment_name].move_attachment(degrees, speed)
else:
print(f"Attachment '{attachment_name}' not found")
def reset_attachment(self, attachment_name):
if attachment_name in self.attachments:
return self.attachments[attachment_name].reset_attachment()
else:
print(f"Attachment '{attachment_name}' not found")
def straight(self, distance, speed):
if not (-200 <= speed <= 200):
print(f"Invalid speed: {speed}. Must be between -200 and 200.")
target_heading = self.hub.imu.heading()
# Reset distance tracking
self.left_motor.reset_angle(0)
self.right_motor.reset_angle(0)
# Calculate target distance in motor degrees
target_degrees = abs(distance) / self.wheel_circumference * 360
while True:
# Check current distance traveled (assuming both motors should be positive for forward)
left_angle = abs(self.left_motor.angle())
right_angle = abs(self.right_motor.angle())
average_angle = (left_angle + right_angle) / 2
# Stop if it reached the target
if average_angle >= target_degrees:
break
# Get heading error for correction
current_heading = self.hub.imu.heading()
heading_error = target_heading - current_heading
# Handle wraparound at 0°/360°
if heading_error > 180:
heading_error -= 360
elif heading_error < -180:
heading_error += 360
# Calculate motor speeds with correction
direction = 1 if distance > 0 else -1
correction = heading_error * 1.5 # Reduced gain for stability
left_speed = direction * (speed + correction)
right_speed = direction * (speed - correction)
# Limit speeds to prevent excessive values
left_speed = max(-200, min(200, left_speed))
right_speed = max(-200, min(200, right_speed))
# Apply speeds to motors
self.left_motor.run(left_speed)
self.right_motor.run(right_speed)
wait(10) # Consistent timing
# Stop motors
self.left_motor.stop()
self.right_motor.stop()
wait(50) # Allow motors to fully stop
def turn(self, theta, speed):
if not (-200 <= speed <= 200):
print(f"Invalid speed: {speed}. Must be between -200 and 200.")
start_angle = self.hub.imu.heading()
target_angle = start_angle + theta
# Normalize target angle to -180 to 180 range
while target_angle > 180:
target_angle -= 360
while target_angle < -180:
target_angle += 360
while True:
current_angle = self.hub.imu.heading()
# Calculate angle error
angle_error = target_angle - current_angle
# Handle wraparound for shortest path
if angle_error > 180:
angle_error -= 360
elif angle_error < -180:
angle_error += 360
# Stop if we're close enough
if abs(angle_error) < 2:
break
# Positive angle_error means we need to turn clockwise (right)
if angle_error > 0:
# Turn right: left motor forward, right motor backward
self.left_motor.run(speed)
self.right_motor.run(-speed)
else:
# Turn left: left motor backward, right motor forward
self.left_motor.run(-speed)
self.right_motor.run(speed)
wait(10) # Consistent timing
# Stop both motors
self.left_motor.stop()
self.right_motor.stop()